Part Number Hot Search : 
740418 SMB5372B D4120W FQI46N15 BR310 08M002 805SR SP2026
Product Description
Full Text Search
 

To Download X3C07M1-03P Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  availableontape andreelforpickand placemanufacturing. usa/canada: tollfree: europe : (315)4328909 (800)4116596 +442392232392 model x 3 c 26p1 - 30s reva 30 db directional coupler description the x3c26p130s is a low profile, high performance 30db directional coupler in a new easy to use, manufacturing friendl y surface mount package. it is designed for wimax and lte band appl ications. the x3c26p130s is designed particularly for power and frequency detection, as well as for vswr monitoring, where ti ghtly controlled couplingandlowinsertionlossisrequired.itcan beusedinhighpower applicationsupto200watts. partshavebeensubjectedtorigorousqualification testingandtheyare manufactured using materials with coefficients of t hermal expansion (cte)compatible withcommonsubstratessuchas fr4 ,g10,rf35, ro4003 and polyimide. produced with 6 of 6 rohs com pliant tin immersionfinish electrical specifications ** frequency mean coupling insertion loss vswr directivity mhz db db max max : 1 db min 2300C2900 30.01.00 0.10 1.15 20 2500C2700 30.0 0.80 0.05 1.12 22 frequency sensitivity power ? jc operating temp. db max avg. cw watts oc/watt oc 0.25 200 30 55to+95 features: ? 2300 - 2900 mhz ? wimax and lte ? high power ? very low loss ? tight coupling ? high directivity ? production friendly ? tape and reel ? lead free 0.10 200 30 55to+95 **specification based on performance of unit proper ly installed on anaren test board 610150001. refe r to specificationssubjecttochangewithoutnotice.r efertoparameterdefinitionsfordetails. mechanical outline
usa/canada: tollfree: europe: (315)4328909 (800)4116596 +442392232392 availableontapeand reelforpickandplace manufacturing. model x 3 c 26p1 - 30s reva directional coupler pin configuration thex3c26p130shasanorientationmarkertodenote pin1.onceportonehasbeenidentifiedtheothe rportsare knownautomatically.pleaseseethechartbelowfo rclarification: 30db coupler pin configuration pin 1 pin 2 pin 3 pin 4 input direct isolated coupled direct input coupled isolated note:thedirectporthasadcconnectiontothein putportandthecoupledporthasadcconnectiont othe isolatedport. foroptimumilandpowerhandlingperformance,use pin1orpin2asinputs.
availableontape andreelforpickand placemanufacturing. usa/canada: tollfree: europe : (315)4328909 (800)4116596 +442392232392 model x 3 c 26p1 - 30s reva insertion loss and power derating curves typicalinsertionlossderatingcurveforx3c26p13 0 0.03 0.025 0.02 0.015 0.01 0.005 0 100 50 0 50 100 150 200 temperatureofthepart( o c) insertionloss(db) typicalinsertionloss(f=2700mhz) typicalinsertionloss(f=2900mhz) x3c26p130powerderatingcurve 0 50 100 150 200 250 300 350 400 0 50 100 150 200 mountinginterfacetemperature( o c) power(watts) 23002900mhz 95 insertion loss derating: the insertion loss, at a given frequency, of a grou p of couplers is measured at 25 c and then averaged. the measurements are performed under small signal conditions (i.e. using a vector network analyzer). the processisrepeatedat85 cand150 c.abestfitlinefor the measured data is computed and then plotted from 55 cto150 c. power derating: the power handling and corresponding power derating plots are a function of the thermal resistance, mou nting surface temperature (base plate temperature), maxim um continuous operating temperature of the coupler, an d the thermal insertion loss. the thermal insertion loss is definedinthepowerhandlingsectionofthedatas heet. as the mounting interface temperature approaches th e maximum continuous operating temperature, the power handlingdecreasestozero. if mounting temperature is greater than 95 c, xinger couplerwillperformreliablyaslongastheinput poweris deratedtothecurveabove.
usa/canada: tollfree: europe: (315)4328909 (800)4116596 +442392232392 availableontapeand reelforpickandplace manufacturing. model x 3 c 26p1 - 30s reva typical performance (-55c, 25c and 95c): 2300-2900 mhz 2300 2400 2500 2600 2700 2800 2900 70 60 50 40 30 20 10 0 frequency(mhz) returnloss(db) returnlossforx3c26p130s(feedingport1) 25oc 55oc 95oc 2300 2400 2500 2600 2700 2800 2900 70 60 50 40 30 20 10 0 frequency(mhz) returnloss(db) returnlossforx3c26p130s(feedingport2) 25oc 55oc 95oc 2300 2400 2500 2600 2700 2800 2900 70 60 50 40 30 20 10 0 frequency(mhz) returnloss(db) returnlossforx3c26p130s(feedingport3) 25oc 55oc 95oc 2300 2400 2500 2600 2700 2800 2900 70 60 50 40 30 20 10 0 frequency(mhz) returnloss(db) returnlossforx3c26p130s(feedingport4) 25oc 55oc 95oc
availableontape andreelforpickand placemanufacturing. usa/canada: tollfree: europe : (315)4328909 (800)4116596 +442392232392 model x 3 c 26p1 - 30s reva typical performance (-55c, 25c and 95c): 2300-29 00mhz 2300 2400 2500 2600 2700 2800 2900 31 30.8 30.6 30.4 30.2 30 29.8 29.6 29.4 29.2 29 frequency(mhz) coupling(db) couplingforx3c26p130s(feedingport1) 25oc 55oc 95oc 2300 2400 2500 2600 2700 2800 2900 60 50 40 30 20 10 0 frequency(mhz) directivity(db) directivityforx3c26p130s(feedingport1) 25oc 55oc 95oc 2300 2400 2500 2600 2700 2800 2900 0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 frequency(mhz) insertionloss(db) insertionlossforx3c26p130s(feedingport1) 25oc 55oc 95oc 2300 2400 2500 2600 2700 2800 2900 0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 frequency(mhz) transmissionloss(db) transmissionlossforx3c26p130s(feedingport1) 25oc 55oc 95oc
usa/canada: tollfree: europe: (315)4328909 (800)4116596 +442392232392 availableontapeand reelforpickandplace manufacturing. model x 3 c 26p1 - 30s reva definition of measured specifications parameter definition mathematical representation vswr (voltage standing wave ratio) theimpedancematchof thecouplertoa50 system.avswrof1:1is optimal. vswr= min max v v vmax=voltagemaximaofastandingwave vmin=voltageminimaofastandingwave return loss theimpedancematchof thecouplertoa50 system.returnlossis analternatemeansto expressvswr. returnloss(db)=20log 1 - vswr 1 vswr + mean coupling atagivenfrequency( n ), couplingistheinput powerdividedbythe poweratthecoupled port.meancouplingis theaveragevalueofthe couplingvaluesinthe band.nisthenumberof frequenciesintheband. coupling(db)= ? ?? ? ? ?? ? = ) ( ) ( log 10 ) ( n cpl n in n p p c meancoupling(db)= n c n n n = 1 ) ( insertion loss theinputpowerdivided bythesumofthepower atthetwooutputports. 10log direct cpl in p p p + transmission loss theinputpowerdivided bythepoweratthedirect port. 10log direct in p p directivity thepoweratthe coupledportdividedby thepowerattheisolated port. 10log iso cpl p p frequency sensitivity thedecibeldifference betweenthemaximumin bandcouplingvalueand themeancoupling,and thedecibeldifference betweentheminimumin bandcouplingvalueand themeancoupling. maxcoupling(db)Cmeancoupling(db) and mincoupling(db)Cmeancoupling(db)
availableontape andreelforpickand placemanufacturing. usa/canada: tollfree: europe : (315)4328909 (800)4116596 +442392232392 model x 3 c 26p1 - 30s reva notes on rf testing and circuit layout thex3c26p130ssurfacemountcouplersrequirethe useofatestfixtureforverificationofrfperfor mance.this test fixture is designed to evaluate the coupler in the same environment that is recommended for insta llation. enclosedinsidethetestfixture,isacircuitboar dthatisfabricatedusingtherecommendedfootprin t.thepartbeing testedisplacedintothetestfixtureandpressure isappliedtothetopofthedeviceusingapneuma ticpiston.afour portvectornetworkanalyzerisconnectedtothefi xtureandisusedtomeasurethesparametersofth epart.worst casevaluesforeachparameterarefoundandcompar edtothespecification.theseworstcasevaluesar ereportedto thetestequipmentoperatoralongwithapassorfa ilflag.seetheillustrationsbelow. 30 db test board test board in fixture test station
usa/canada: tollfree: europe: (315)4328909 (800)4116596 +442392232392 availableontapeand reelforpickandplace manufacturing. model x 3 c 26p1 - 30s reva theeffectsofthetestfixtureonthemeasureddat amustbeminimizedinordertoaccuratelydetermin ethe performance of the device under test. if the line i mpedance is anything other than 50 and/or there is a discontinuityatthemicrostriptosmainterface,t herewillbeerrorsinthedataforthedeviceunde rtest.the test environment can never be perfect, but the pr ocedure used to build and evaluate the test boards (outlinedbelow)demonstratesanattempttominimiz etheerrorsassociated withtestingthesedevices. the lower the signal level that is being measured, the more impact the fixture errors will have on the dat a. parameters such as return loss and isolation/direct ivity, which are specified as low as 27db and typic ally measureatmuchlowerlevels,willpresentthegrea testmeasurementchallenge. thetestfixtureerrorsintroduceanuncertaintyto themeasureddata.fixtureerrorscanmaketheper formanceofthe deviceundertestlookbetterorworsethanitactu allyis.forexample,ifadevicehasaknownretur nlossof30dband adiscontinuitywithamagnitudeofC35dbisintrod ucedintothemeasurementpath,thenewmeasuredre turnloss data could read anywhere between C26db and C37db. t his same discontinuity could introduce an insertion phase errorofupto1 . there are different techniques used throughout the industry to minimize the affects of the test fixtur e on the measurementdata.anarenusesthefollowingdesign anddeembeddingcriteria: ? test boards have been designed and parameters spec ified to provide trace impedances of 50 1 .furthermore,discontinuitiesatthesmatomicros tripinterfacearerequiredtobelessthan C35db and insertion phase errors (due to difference s in the connector interface discontinuities and the electrical line length) should be less than 0.25 from the median value of the four paths. ? a thru circuit board is built. this is a two por t, microstrip board that uses the same sma to microstripinterfaceandhasthesametotallength (insertionphase)astheactualtestboard.the thru board mustmeet the same stringent requireme nts as the test board. the insertion loss and insertion phase of the thru board are measure d and stored. this data is used to completely deembed the device under test from the test fixture. the deembedded data is availableinsparameterformontheanarenwebsite (www.anaren.com). note : the sparameter files that are available on the anaren.com website include data for frequencies tha t are outsideofthespecifiedband.itisimportantton otethatthetestfixtureisdesignedforoptimump erformancethrough 2.3ghz. some degradation in the test fixture perfor mance will occur above this frequency and connector interface discontinuitiesofC25dbormorecanbeexpected.t hislargerdiscontinuitywillaffectthedataatfr equenciesabove 2.3ghz. circuit board layout the dimensions for the anaren test board are shown below. the test board is printed on rogers ro4350m aterial thatis0.030thick. considerthecasewhenadifferentmaterialisused .first,thepadsizemustremainthesameto accommodate the part. but, if the material thicknes s or dielectric constant (or both) changes, the rea ctance at the interfacetothecouplerwillalsochange.second, thelinewidthrequiredfor50 willbedifferentandthiswillintroduce astepinthelineatthepadwherethecouplerint erfaceswiththeprintedmicrostriptrace.bothof theseconditionswill affecttheperformanceofthepart. to achieve the specified performance, serious atten tion must be given to the design and layout of the circuit environment in whi ch this component will be used. ifadifferentcircuitboardmaterialisused,ana ttemptshouldbemadetoachievethesameinterface padreactance thatispresentontheanarenro4350testboard.wh enthinnercircuitboardmaterialisused,thegrou ndplanewill be closer to the pad yielding more capacitance for the same size interface pad. the same is true if th e dielectric constant of the circuit board material is higher th an is used on the anaren test board. in both of the se cases, narrowing the line before the interface pad will in troduce a series inductance, which, when properly t uned, will compensatefortheextracapacitivereactance.ifa thickercircuitboardoronewithalowerdielectr icconstantisused,
availableontape andreelforpickand placemanufacturing. usa/canada: tollfree: europe : (315)4328909 (800)4116596 +442392232392 model x 3 c 26p1 - 30s reva theinterfacepadwillhavelesscapacitivereactan cethantheanarentestboard.inthiscase,awide rsectionofline before the interface pad (or a larger interface pad ) will introduce a shunt capacitance and when prope rly tuned will matchtheperformanceoftheanarentestboard. noticethattheboardlayoutforthe3dband5dbco uplersisdifferentfromthatofthe10dband20db couplers.the testboardforthe3dband5dbcouplershasallfou rtracesinterfacingwiththecoupleratthesamea ngle.thetest boardforthe30db,10dband20dbcouplershastwo tracesapproachingatoneangleandtheothertwot racesata differentangle. the entry angle of the traces has a significant imp act on the rf performance and these parts have been optimized for the layout used on the test boards shown below. 30db test board testing sample parts supplied on anaren test boards ifyouhavereceivedacouplerinstalledonananar enproducedmicrostriptestboard,pleaseremember toremovethe lossofthetestboardfromthemeasureddata.the lossissmallenoughthatitisnotofconcernfor returnlossand isolation/directivity,butitshouldcertainlybec onsideredwhenmeasuringcouplingandcalculatingt heinsertionloss ofthecoupler.ansparameterfileforathrubo ard(seedescriptionofthruboardabove)willbe suppliedupon request.asafirstorderapproximation,oneshould considerthefollowinglossestimates: frequency band avg. ins. loss of test board @ 25 c 410 C 500 mhz ~ 0.04db 800 - 1000 mhz ~ 0.06db 1700 C 2300 mhz ~0.14db 2300 C 2700 mhz ~0.155db 3300 C 3800 mhz ~0.20db for example, a 1900mhz, 10db coupler on a test boar d may measure C10.30db from input to the coupled po rt at somefrequency,f1.whenthelossofthetestboard isremoved,thecouplingatf1becomes10.18db( 10.30db+ 0.12db). this compensation must be made to both the coupled and direct path measurements when calculat ing insertionloss. the loss estimates in the table above come from roo m temperature measurements. it is important to note that the lossofthetestboardwillchangewithtemperature .thisfactmustbeconsideredifthecoupleristo beevaluatedat othertemperatures.
usa/canada: tollfree: europe: (315)4328909 (800)4116596 +442392232392 availableontapeand reelforpickandplace manufacturing. model x 3 c 26p1 - 30s reva peak power handling highpottestingofthesecouplersduringthequali ficationprocedureresultedinaminimumbreakdown voltageof1.40 kv.thisvoltagelevelcorrespondstoabreakdownr esistancecapableofhandlingatleast12dbpeakso veraverage power levels, for very short durations. the breakdo wn location consistently occurred across the air in terface at the coupler contact pads (see illustration below). the breakdown levels at these points will be affected b y any contamination in the gap area around these pads. th ese areas must be kept clean for optimum performanc e. it is recommendedthattheusertestforvoltagebreakdow nunderthemaximumoperatingconditionsandoverw orstcase modulation induced power peaking. this evaluation s hould also include extreme environmental conditions (such as highhumidity). orientation marker aprintedcircularfeatureappearsonthetopsurfa ceofthecouplertodesignatepin1.thisorientat ionmarkeris not intended to limit the use of the symmetry that thes e couplers exhibit but rather to facilitate consist ent placement of these parts into the tape and reel package. this en sures that the components are always delivered with the same orientation.refertothetableonpage2oftheda tasheetforallowablepinconfigurations. testplan xinger iii 30db couplers are manufactured in large panels and then separated. a sample population of p arts is rf smallsignaltestedatroomtemperatureinthefixt uredescribedabove.all partsaredctestedforshorts/opens.(see qualificationflowchartsectionfordetailsont heacceleratedlifetestprocedures.)
availableontape andreelforpickand placemanufacturing. usa/canada: tollfree: europe : (315)4328909 (800)4116596 +442392232392 model x 3 c 26p1 - 30s reva power handling theaveragepowerhandling(totalinputpower)ofa xingercouplerisafunctionof: ? internalcircuittemperature. ? unitmountinginterfacetemperature. ? unitthermalresistance ? powerdissipatedwithintheunit. allthermalcalculationsarebasedonthefollowing assumptions: ? theunithasreachedasteadystateoperatingcond ition. ? maximummountinginterfacetemperatureis95 o c. ? conductionheattransferthroughthemountinginte rface. ? noconvectionheattransfer. ? noradiationheattransfer. ? thematerialpropertiesareconstantovertheoper atingtemperaturerange. finite element simulations are made for each unit. the simulation results are used to calculate the u nit thermal resistance.thefiniteelementsimulationrequires thefollowinginputs: ? unitmaterialstackup. ? materialproperties. ? circuitgeometry. ? mountinginterfacetemperature. ? thermalload(dissipatedpower). the classical definition for dissipated power is te mperature delta ( t) divided by thermal resistance (r). the dissipatedpower(p dis )canalsobecalculatedasafunctionofthetotal inputpower(p in )andthethermalinsertionloss (il therm ): ) ( 10 1 10 w p r t p therm il in dis ? ?? ? ? ?? ? ? ? = = ? (1) powerflowandnomenclatureforanhstylecouple risshowninfigure1.
usa/canada: tollfree: europe: (315)4328909 (800)4116596 +442392232392 availableontapeand reelforpickandplace manufacturing. model x 3 c 26p1 - 30s reva pin1 pin4 inputport coupledport isolatedport directport p in p out (rl) p out (dc) p out (cpl) p out (iso) figure1 thecouplerisexcitedattheinputportwithp in (watts)ofpower.assumingthecouplerisnotide al,andthatthereare no radiation losses, power will exit the coupler at all four ports. symbolically written, p out(rl) is the power that is returned to the source because of impedance mismatc h, p out(iso) is the power at the isolated port, p out(cpl) is the poweratthecoupledport,andp out(dc) isthepoweratthedirectport. atanaren,insertionlossisdefinedasthelogof theinputpowerdividedbythesumofthepowerat thecoupledand directports: note:inthisdocument,insertionlossistakento beapositivenumber.inmanyplaces,insertionlo ssiswrittenasa negativenumber.obviously,ameresignchangeequ atesthetwoquantities. ) db ( p p p log 10 il ) dc ( out ) cpl ( out in 10 ? ?? ? ? ?? ? + ? = (2) intermsofsparameters,ilcanbecomputedasfol lows: ) db ( s s log 10 il 2 41 2 31 10 ?? ? ?? ? + ? ? = (3) we notice that this insertion loss value includes t he power lost because of return loss as well as pow er lost to the isolatedport. for thermal calculations, we are only interested in the power lost inside the coupler. since p out(rl) is lost in the source termination and p out(iso) is lost in an external termination, they are not b e included in the insertion loss for thermalcalculations.therefore,wedefineanewi nsertionlossvaluesolelytobeusedforthermalc alculations:
availableontape andreelforpickand placemanufacturing. usa/canada: tollfree: europe : (315)4328909 (800)4116596 +442392232392 model x 3 c 26p1 - 30s reva ) ( log 10 ) ( ) ( ) ( ) ( 10 db p p p p p il rl out iso out dc out cpl out in therm ? ?? ? ? ?? ? + + + ? = (4) intermsofsparameters,il therm canbecomputedasfollows: ) ( log 10 2 41 2 31 2 21 2 11 10 db s s s s il therm ?? ? ?? ? + + + ? ? = (5) thethermalresistanceandpowerdissipatedwithin theunitarethenusedtocalculatetheaveragetot alinputpower oftheunit.theaveragetotalsteadystateinput power(p in )thereforeis: ) ( 10 1 10 1 10 10 w r t p p therm therm il il dis in ? ?? ? ? ?? ? ? = ? ?? ? ? ?? ? ? = ? ? (6) wherethetemperaturedeltaisthecircuittemperat ure(t circ )minusthemountinginterfacetemperature(t mnt ): ) ( c t t t o mnt circ ? = (7) themaximum allowable circuit temperature is define d by the properties of the materials used to constr uct the unit. multiple material combinations and bonding techniqu es are used within the xinger iii product family to optimize rf performance. consequently the maximum allowable ci rcuit temperature varies. please note that the cir cuit temperatureisnotafunctionofthexingercase(t opsurface)temperature.therefore,thecasetempe raturecannot beusedasaboundaryconditionforpowerhandling calculations. duetothenumerousboardmaterialsandmountingco nfigurationsusedinspecificcustomerconfiguratio ns,itisthe endusersresponsibilitytoensurethatthexinger iiicouplermountinginterfacetemperatureismaint ainedwithinthe limits defined on the power derating plots for the required average p ower handling. additionally appropriate solder composition is required to prevent reflow or fatigue failure at the rf ports. finally, reliabil ity is improved when the mountinginterfaceandrfporttemperaturesarekep ttoaminimum. thepowerderatingcurveillustrateshowchangesin themountinginterfacetemperatureresultinconve rsechanges ofthepowerhandlingofthecoupler.
usa/canada: tollfree: europe: (315)4328909 (800)4116596 +442392232392 availableontapeand reelforpickandplace manufacturing. model x 3 c 26p1 - 30s reva mounting in order for xinger surface mount couplers to work optimally, there must be 50 transmission lines lea ding to and from all of the rf ports. also, there must be a very good ground plane underneath the part to ensur e proper electrical performance. if either of these two conditionsisnotsatisfied,insertionloss,coupli ng,vswr andisolationmaynotmeetpublishedspecifications . overall ground is improved if a dense population of platedthroughholesconnectthetopandbottomgro und layers of the pcb. this minimizes ground inductanc e and improves ground continuity. all of the xinger h ybrid and directional couplers are constructed from ceram ic filledptfecompositeswhichpossessexcellentelec trical and mechanical stability having x and y thermal coefficientofexpansion(cte)of1725ppm/ o c. when a surface mount hybrid coupler is mounted to a printed circuit board, the primary concerns are; en suring the rf pads of the device are in contact with the c ircuit traceofthepcbandinsuringthegroundplaneofn either the component nor the pcb is in contact with the rf signal. mounting footprint coupler mounting process the process for assembling this component is a conventional surface mount process as shown in figu re 1.thisprocessisconducivetobothlowandhighv olume usage. figure 1: surface mounting process steps storage of components: the xinger iii products are available in either an immersion tin or tinlead fi nish. commonly used storage procedures used to control oxidation should be followed for these surface moun t components. the storage temperatures should be hel d between15 o cand60 o c. substrate: depending upon the particular component, the circuit material has an x and y coefficient of thermal expansionofbetween17and25ppm/c.thiscoeffic ient minimizes solder joint stresses due to similar expa nsion rates of most commonly used board substrates such a s rf35, ro4350, fr4, polyimide and g10 materials. mounting to hard substrates (alumina etc.) is pos sible depending upon operational temperature requirements . the solder surfaces of the coupler are all copper p lated witheitheranimmersiontinortinleadexteriorf inish. solder paste: allconventionalsolderpasteformulations will work well with anarens xinger iii surface mou nt components.solderpastecanbeappliedwithstenci lsor syringe dispensers. an example of a stenciled solde r paste deposit is shown in figure 2. as shown in th e figuresolderpasteisappliedtothefourrfpads andthe entiregroundplaneunderneaththebodyofthepart .
availableontape andreelforpickand placemanufacturing. usa/canada: tollfree: europe : (315)4328909 (800)4116596 +442392232392 model x 3 c 26p1 - 30s reva figure 2: solder paste application coupler positioning: the surface mount coupler can be placed manually or with automatic pick and place mechanisms.couplersshouldbeplaced(seefigure3 and 4) onto wet paste with common surface mount techniques and parameters. pick and place systems must supply adequate vacuum to hold a 0.115 gram coupler. figure 3: component placement figure 4: mounting features example reflow: thesurfacemountcouplerisconducivetomostof todays conventional reflow methods. a low and high temperature thermal reflow profile are shown in fig ures 5 and6,respectively.manualsolderingofthesecomp onents can be done with conventional surface mount noncon tact hot air soldering tools. board preheating is highl y recommended for these selective hot air soldering methods.manualsolderingwithconventionalirons should beavoided.
usa/canada: tollfree: europe: (315)4328909 (800)4116596 +442392232392 availableontapeand reelforpickandplace manufacturing. model x 3 c 26p1 - 30s reva figure 5 C low temperature solder reflow thermal pr ofile figure 6 C high temperature solder reflow thermal p rofile
availableontape andreelforpickand placemanufacturing. usa/canada: tollfree: europe : (315)4328909 (800)4116596 +442392232392 model x 3 c 26p1 - 30s reva qualification flow chart xingeriiiproduct qualification visualinspection n=55 mechanicalinspection n=50 solderabilitytest n= 5 initialrftest n=50 visualinspection n=50 vtek testing n=45 visualinspection n=50 postv t ektestrftest n=50 visualinspection n=50 solderunitstotest board n=25 postsoldervisual inspection n=25 visualinspection n=25 rftestat55c,25c, 95c n=20 initialrf testboard mounted n=25 visualinspection n=25 postresistanceheatrf t est n=20 mechanicalinspection n=20 voltagebreakdownt estmil 202f,method30125c5kv n=40 visualinspection n=50 c ontrolunitsrf test 25conly n=5 loose contr olun its n= 5 resistancetosolder mil202g method210f,conditionkheat n=20 loosecontr olunits n=5 controlunits n=5 loosecontrolunits n=5
usa/canada: tollfree: europe: (315)4328909 (800)4116596 +442392232392 availableontapeand reelforpickandplace manufacturing. model x 3 c 26p1 - 30s reva contr olu nits n=10 postvoltagerftest n=50 therm alcycle 100 cycles 55 to 125c.dwelltime= 30min n=40 visualinspection n=50 controlunits n=10 visualinspection n=50 bakeunitsfor1hourat 100to120c n=40 125% power lifetest72hrs n= 3 postbakerftest n=50 visualinspection n=30 micr osection 3test units1control f inalrftest@ 25c n= 2 5 microsection 2life,1highpower and 1contr ol postmoistureresistance rf test n=50 postt hermalrf test n=50 moistureresistancetesting25to 65cfor2 hrs@90%humidity.soakfor 168hr sat90%to 85% humidity.ramptempto25cin2hrs@ 90% humidity.thensoak@10cfor3hrs. n=40 post moistureresistance rf test n=50 controlunits n=10
availableontape andreelforpickand placemanufacturing. usa/canada: tollfree: europe : (315)4328909 (800)4116596 +442392232392 model x 3 c 26p1 - 30s reva application information directional couplers and sampling directional couplers are often used in circuits tha t require the sampling of an arbitrary signal. bec ause they are passive,nonlineardevices,anarendirectionalcou plersdonotperturbthecharacteristicsofthesig naltobesampled, andcan beusedforfrequencymonitoringand/ormea surementofrfpower. anexampleofasamplingcirc uitisthe reflectometer. the purpose of the reflectometer is to isolate and sample the incident and reflected s ignals from a mismatchedload.abasicreflectometercircuitis showninfigureap.n.11. figureap.n.11.areflectometercircuitschematic ifthedirectionalcouplerhasperfectdirectivity, thenitisclearthatv i isstrictly asampleoftheincident voltagev input , andv r isstrictlyasampleofthewavethatisreflected fromtheload.sincedirectivityisneverperfect inpractice,both v i andv r willcontainsamplesoftheinputsignalaswella sthereflectedsignal.inthatcase, j i e v + = cdt c eq.ap.n.11 and j r e v + = ct cd eq.ap.n.12 where c is the coupling, d is the directivity, is the complex reflection coefficient of the load, t is the transmission coefficient,and and areunknownphasedelaydifferencescausedbythe interconnectlinesonthetestboard.ifwe knowv i andv r ,wecaneasilycalculatethereflectioncoefficien toftheload.oneshouldnoticethatinorderto make forward and reverse measurements using only one cou pler, the directivity must be really low. in speci fic customer applications,thepreferredmethodforforwardand reversesamplingisshowninfigureap.n.12. load 1 2 3 4 reflected wave v input i v v r
usa/canada: tollfree: europe: (315)4328909 (800)4116596 +442392232392 availableontapeand reelforpickandplace manufacturing. model x 3 c 26p1 - 30s reva load 1 2 3 4 reflected wave input isolator reverse measurement measurement forward **termination *recommended terminations power(watts) model 8 rfp060120a15z502 10 rfpc10a50z4 16 rfpc16a50z4 20 rfpc20n50z4 50 rfpc50a50z4 100 rfpc100n50z4 200 rfpc200n50z4 figureap.n.12.forwardandreversesampling theisolatorinfigureap.n.12preventsthereflec tedwavefromexcitingthedirectionalcoupler.a listofrecommended terminationsisshowninthefigure. directional couplers in feed-forward amplifier appl ications feedforward amplifiers are widely used to reduce d istortion due to nonlinearities in power amplifiers . although the levelandcomplexityoffeedforwardamplifiersvar iesfromonemanufacturertoanother,thebasicbui ldingblockforthis linearizationschemeremainsthesame.abasicfee dforwardschematicisshowninfigureap.n.21.t heinputsignal issplitintwousingahybridcouplerorpowerdiv ider.theoutputofthemainamplifierissampled witha20db30db directionalcoupler.thex3c26p130sisanexcelle ntcandidateforthissamplingsinceitprovidesgr eatreturnlossand directivity.thesampledsignal,whichconsistsof asampleoftheoriginalinputsignalplussomedi stortion,isinverted andthencombinedwiththeoutputofthefirstdela yline.thisproceduresubtracts(throughdestruct iveinterference)the sample of the original input signal, leaving only t he distortion or error component. the error compon ent is then amplifiedandcombined withtheoutput ofthesecon ddelaylineusinganother directionalcoupler.in manycases,a 10dbcouplerisusedtocombinethetwosignals.t hexc0900e10isaperfectchoiceforthisinjectio nbecauseithas tightcoupling,superiordirectivity,andexcellent match.
availableontape andreelforpickand placemanufacturing. usa/canada: tollfree: europe : (315)4328909 (800)4116596 +442392232392 model x 3 c 26p1 - 30s reva *recommended terminations power(watts) model 8 rfp060120a15z502 10 rfpc10a50z4 16 rfpc16a50z4 20 rfpc20n50z4 50 rfpc50a50z4 100 rfpc100n50z4 200 rfpc200n50z4 figureap.n.21.genericfeedforwardcircuitsche matic both directional couplers in the figure ap.n.21 ha ve one port terminated with a 50 resistor. in order to achieve optimumperformance,theterminationmustbechosen carefully.itisimportant torememberthatagoo dtermination willnotonlyproduceagoodmatchattheinputof thecoupler,butwillalsomaximizetheisolationb etweentheinputport andisolatedport.furthermore,sincetheterminat ioncanpotentiallyabsorbhighlevelsofpower,it smaximumpower rating should be chosen accordingly. a list of rec ommended terminations is shown in figure ap.n.21. for an ideal losslessdirectionalcoupler,thepoweratthecoup ledanddirectportscanbewrittenas: watts db 10 ) ( coupling input coupled 10 p p = eq.ap.n.21 watts db 10 ) ( coupling input input direct 10 p p p ? = eq.ap.n.22 wherep input istheinputpowerinwatts,andcoupling(db)ist hecouplingvalueindb.
usa/canada: tollfree: europe: (315)4328909 (800)4116596 +442392232392 availableontapeand reelforpickandplace manufacturing. model x 3 c 26p1 - 30s reva packaging and ordering information partsareavailableinareelandasloosepartsin abag.packagingfollowseia4812forreels.pa rtsareorientedin tapeandreelasshownbelow.minimumorderquanti tiesare2000perreeland100forlooseparts.see model numbersbelowforfurtherorderinginformation. directionofpart feed(unloading) dimensionsareininches[mm] xingercoupler frequency(mhz) size(inches) coupling value platingfinish x3c 04=410500 07=600900 09=8001000 19=17002000 21=20002300 25=23002500 26=26502800 35=33003800 a=0.56x0.35 b=1.0x0.50 e=0.56x0.20 l=0.65x0.48 m=0.40x0.20 p=0.25x0.20 1=100 2=200 3=300 p=tinlead s=immersiontin xxxxxxxxxx 03=3db 05=5db 10=10db 20=20db 30=30db power(watts) example:x3c19p103s


▲Up To Search▲   

 
Price & Availability of X3C07M1-03P

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X